Reading Passage 1 – Plant Scents

You should spend about 20 minutes on Questions 1-13, which are based on Reading Passage 1 below.

Plant Scents

A

Everyone is familiar with scented flowers, and many people have heard that floral odors help the plant attract pollinators. This common notion is mostly correct, but it is surprising how little scientific proof of it exists. Of course, not all flowers are pollinated by biological agents – for example, many grasses are wind-pollinated – but the flowers of the grasses may still emit volatiles. In fact, plants emit organic molecules all the time, although they may not be obvious to the human nose. As for flower scents that we can detect with our noses, bouquets that attract moths and butterflies generally smell “sweet,” and those that attract certain flies seem “rotten” to us.

B

The release of volatiles from vegetative parts of the plant is familiar, although until recently the physiological functions of these chemicals were less clear and had received much less attention from scientists. When the trunk of a pine tree is injured – for example, when a beetle tries to burrow into it – it exudes a very smelly resin. This resin consists mostly of terpenes – hydrocarbons with a backbone of 10, 15 or 20 carbons that may also contain atoms of oxygen. The heavier C20 terpenes, called diterpenes, are glue-like and can cover and immobilize insects as they plug the hole. This defense mechanism is as ancient as it is effective: Many samples of fossilized resin, or amber, contain the remains of insects trapped inside. Many other plants emit volatiles when injured, and in some case, the emitted signal helps defend the plant. For example, (Z)-3-hexenyl acetate, which is known as a “green leaf volatile” because it is emitted by many plants upon injury, deters females of the moth Heliothis virescens from laying eggs on injured tobacco plants. Interestingly, the profile of emitted tobacco volatiles is different at night than during the day, and it is the nocturnal blend, rich in several (Z)-3-hexen-1-olesters, that is most effective in repelling the night-active H. virescens moths.

C

Herbivore induced volatiles often serve as indirect defenses. These bulwarks exist in a variety of plant species, including corn, beans, and the model plant species Arabidopsis thaliana. Plants not only emit volatiles acutely, at the site where caterpillars, mites, aphids or similar insects are eating them but also generally from non-damaged parts of the plant. These signals attract a variety of predatory insects that prey on the plant-eaters. For example, some parasitic wasps can detect the volatile signature of a damaged plant and will lay their eggs inside the offending caterpillar; eventually, the wasp eggs hatch, and the emerging larvae feed on the caterpillar from the inside hatch, and the emerging larvae feed on the caterpillar from the inside out. The growth of infected caterpillars is retarded considerably, to the benefit of the plant. Similarly, volatiles released by plants in response to herbivore egg laying can attract parasites of the eggs, thereby preventing them from hatching and avoiding the onslaught of hungry herbivores that would have emerged. Plant volatiles can also be used as a kind of currency in some very indirect defensive schemes. In the rainforest understory tree Leonardoxa Africana, ants of the species Petalomyrmex phylax patrol young leaves and attack any herbivorous insects that they encounter. The young leaves emit high levels of the volatile compound methyl salicylate, a compound that the ants use either as a pheromone or as an antiseptic in their nests. It appears that methyl salicylate is both an attractant and a reward offered by the tree to get the ants to perform this valuable deterrent role.

D

Floral scent has a strong impact on the economic success of many agricultural crops that rely on insect pollinators, including fruit trees such as the bee-pollinated cherry, apple, apricot and peach, as well as vegetables and tropical plants such as papaya. Pollination not only affects crop yield, but also the quality and efficiency of crop production. Many crops require most, if not all, ovules to be fertilized for optimum fruit size and shape. A decrease in fragrance emission reduces the ability of flowers to attract pollinators and results in considerable losses for growers, particularly for introduced species that had a specialized pollinator in their place of origin. This problem has been exacerbated by recent disease epidemics that have killed many honeybees, the major insect pollinators in the United States.

E

One means by which plant breeders circumvent the pollination problem is by breeding self-compatible, or apomictic, varieties that do not require fertilization. Although this solution is adequate, its drawbacks include near genetic uniformity and consequent susceptibility to pathogens. Some growers have attempted to enhance honeybee foraging by spraying scent compounds on orchard trees, but this approach was costly, had to be repeated, had potentially toxic effects on the soil or local biota, and, in the end, proved to be inefficient. The poor effectiveness of this strategy probably reflects inherent limitations of the artificial, topically applied compounds, which clearly fail to convey the appropriate message to the bees. For example, general spraying of the volatile mixture cannot tell the insects where exactly the blossoms are. Clearly, a more refined strategy is needed. The ability to enhance existing floral scent, which could all be accomplished by genetic engineering, would allow us to manipulate the types of insect pollinators and the frequency of their visits. Moreover, the metabolic engineering of fragrance could increase crop protection against pathogens and pests.

F

Genetic manipulation of the scent will also benefit the floriculture industry. Ornamentals, including cut flowers, foliage and potted plants, play an important aesthetic role in human life. Unfortunately, traditional breeding has often produced cultivars with improved vase life, shipping characteristics, color and shape while sacrificing desirable perfumes. The loss of scent among ornamentals, which have a worldwide value of more than $30 billion, makes them important targets for the genetic manipulation of flower fragrance. Some work has already begun in this area, as several groups have created petunia and carnation plants that express the linalool synthase gene from C. Breweri. These experiments are still preliminary: For technical reasons, the gene was expressed everywhere in the plant, and although the transgenic plants did create small amounts of linalool, the level was below the threshold of detection for the human nose. Similar experiments in tobacco used genes for other monoterpene synthases, such as the one that produces limonene, but gave similar results.

G

The next generation of experiments, already in progress, includes sophisticated schemes that target the expression of scent genes specifically to flowers or other organs – such as special glands that can store antimicrobial or herbivore – repellent compounds.

Reading Passage 2 – Seed Hunting

You should spend about 20 minutes on Questions 14-26, which are based or Reading Passage 2 below.

Seed Hunting

A

With a quarter of the world’s plants set to vanish within the next 50 years, Dough Alexander reports on the scientists working against the clock the preserve the Earth’s botanical heritage. They travel the four corners of the globe, scouring jungles, forests and savannas. But they’re not looking for ancient artefacts, lost treasure or undiscovered tombs. Just pods. It may lack the romantic allure of archaeology or the whiff of danger that accompanies going after a big game, but seed hunting is an increasingly serious business. Some seek seeds for profit-hunters in the employ of biotechnology firms, pharmaceutical companies and private corporations on the lookout for species that will yield the drugs or crops of the future. Others collect to conserve, working to halt the sad slide into extinction facing so many plant species.

B

Among the pioneers of this botanical treasure hunt was John Tradescant, an English royal gardener who brought back plants and seeds from his journeys abroad in the early 1600s. Later, the English botanist Sir Joseph Banks – who was the first director of the Royal Botanic Gardens at Kew and travelled with Captain James Cook on his voyages near the end of the 18th century – was so driven to expand his collections that he sent botanists around the world at his own expense.

C

Those heady days of exploration and discovery may be over, but they have been replaced by a pressing need to preserve our natural history for the future. This modern mission drives hunters such as Dr Michiel van Slageren, a good-natured Dutchman who often sports a wide-brimmed hat in the field – he could easily be mistaken for the cinematic hero Indiana Jones. He and three other seed hunters work at the Millennium Seed Bank, an 80 million [pounds sterling] international conservation project that aims to protect the world’s most endangered wild plant species.

D

The group’s headquarters are in a modern glass-and-concrete structure on a 200-hectare Estate at Wakehurst Place in the West Sussex countryside. Within its underground vaults are 260 million dried seeds from 122 countries, all stored at -20 Celsius to survive for centuries. Among the 5,100 species represented are virtually all of Britain’s 1,400 native seed-bearing plants, the most complete such collection of any country’s flora.

E

Overseen by the Royal botanic gardens, the Millennium Seed Bank is the world’s largest wild-plant depository. It aims to collect 24,000 species by 2010. The reason is simple: thanks to humanity’s effort, an estimated 25 per cent of the world’s plants are on the verge of extinction and may vanish within 50 years. We’re currently responsible for habitat destruction on an unprecedented scale, and during the past 400 years, plant species extinction rates have been about 70 times greater than those indicated by the geological record as being ‘normal’. Experts predict that during the next 50 years further one billion hectares of wilderness will be converted to farmland in developing countries alone.

F

The implications of this loss are enormous. Besides providing staple food crops, plants are a source of many machines and the principal supply of fuel and building materials in many parts of the world. They also protect soil and help regulate the climate. Yet, across the globe, plant species are being driven to extinction before their potential benefits are discovered.

G

The world Conservation Union has listed 5,714 threatened species is sure to be much higher. In the UK alone, 300 wild plant species are classified as endangered. The Millennium Seed Bank aims to ensure that even if a plant becomes extinct in the wild, it won’t be lost forever. Stored seeds can be used the help restore damaged or destroyed the environment or in scientific research to find new benefits for society- in medicine, agriculture or local industry- that would otherwise be lost.

H

Seed banks are an insurance policy to protect the world’s plant heritage for the future, explains Dr Paul Smith, another Kew seed hunter. “Seed conservation techniques were originally developed by farmers,” he says. “Storage is the basis what we do, conserving seeds until you can use them just as in farming,” Smith says there’s no reason why any plant species should become extinct, given today’s technology. But he admits that the biggest challenge is finding, naming and categorizing all the world’s plants. And someone has to gather these seeds before it’s too late. “There aren’t a lot of people out there doing this,” he says. “The key is to know the flora from a particular area, and that knowledge takes years to acquire.”

I

There are about 1,470 seedbanks scattered around the globe, with a combined total of 5.4 million samples, of which perhaps two million are distinct non-duplicates. Most preserve genetic material for agriculture use in order to ensure crop diversity; others aim to conserve wild species, although only 15 per cent of all banked plants is wild.

J

Many seed banks are themselves under threat due to a lack of funds. Last year, Imperial College, London, examined crop collections from 151 countries and found that while the number of plant samples had increased in two-thirds of the countries, the budget had been cut in a quarter and remained static in another 35 per cent. The UN’s Food and Agriculture Organization and the Consultative Group on International Agricultural Research has since set up the Global Conservation Trust, which aims to raise the US $260 million to protect seed banks in perpetuity.

Reading Passage 3 – The Power of Nothing

You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below.

The Power of Nothing

Geoff Watts, New Scientist (May 26th, 2001)

A

Want to devise a new form of alternative medicine? No problem. Here is the recipe. Be warm, sympathetic, reassuring and enthusiastic. Your treatment should involve physical contact, and each session with your patients should last at least half an hour. Encourage your patients to take an active part in their treatment and understand how their disorders relate to the rest of their lives. Tell them that their own bodies possess the true power to heal. Make them pay you out of their own pockets. Describe your treatment in familiar words, but embroidered with a hint of mysticism: energy fields, energy flows, energy blocks, meridians, forces, auras, rhythms and the like. Refer to the knowledge of an earlier age: wisdom carelessly swept aside by the rise and rise of blind, mechanistic science. Oh, come off it, you are saying. Something invented off the top of your head could not possibly work, could it?

B

Well yes, it could – and often well enough to earn you a living. A good living if you are sufficiently convincing, or better still, really believe in your therapy. Many illnesses get better on their own, so if you are lucky and administer your treatment at just the right time you will get the credit. But that’s only part of it. Some of the improvement really would be down to you. Your healing power would be the outcome of a paradoxical force that conventional medicine recognizes but remains oddly ambivalent about: the placebo effect.

C

Placebos are treatments that have no direct effect on the body, yet still, work because the patient has faith in their power to heal. Most often the term refers to a dummy pill, but it applies just as much to any device or procedure, from a sticking plaster to a crystal to an operation. The existence of the placebo effect implies that even quackery may confer real benefits, which is why any mention of placebo is a touchy subject for many practitioners of complementary and alternative medicine, who are likely to regard it as tantamount to a charge of charlatanism. In fact, the placebo effect is a powerful part of all medical care, orthodox or otherwise, though its role is often neglected or misunderstood.

D

One of the great strengths of CAM may be its practitioners’ skill in deploying the placebo effect to accomplish real healing. “Complementary practitioners are miles better at producing non-specific effects and good therapeutic relationships,” says Edzard Ernst, professor of CAM at Exeter University. The question is whether CAM could be integrated into conventional medicines, as some would like, without losing much of this power.

E

At one level, it should come as no surprise that our state of mind can influence our physiology: anger opens the superficial blood vessels of the face; sadness pumps the tear glands. But exactly how placebos work their medical magic is still largely unknown. Most of the scant research done so far has focused on the control of pain because it’s one of the commonest complaints and lends itself to experimental study. Here, attention has turned to the endorphins, morphine-like neurochemicals known to help control pain.

F

But exactly how placebos work their medical magic is still largely unknown. Most of the scant research to date has focused on the control of pain because it’s one of the commonest complaints and lends itself to experimental study. Here, attention has turned to the endorphins, natural counterparts of morphine that are known to help control pain. “Any of the neurochemicals involved in transmitting pain impulses or modulating them might also be involved in generating the placebo response,” says Don Price, an oral surgeon at the University of Florida who studies the placebo effect in dental pain.

G

“But endorphins are still out in front.” That case has been strengthened by the recent work of Fabrizio Benedetti of the University of Turin, who showed that the placebo effect can be abolished by a drug, naloxone, which blocks the effects of endorphins. Benedetti induced pain in human volunteers by inflating a blood-pressure cuff on the forearm. He did this several times a day for several days, using morphine each time to control the pain. On the final day, without saying anything, he replaced the morphine with a saline solution. This still relieved the subjects’ pain: a placebo effect. But when he added naloxone to the saline the pain relief disappeared. Here was direct proof that placebo analgesia is mediated, at least in part, by these natural opiates.

H

Still, no one knows how belief triggers endorphin release, or why most people can’t achieve placebo pain relief simply by willing it. Though scientists don’t know exactly how placebos work, they have accumulated a fair bit of knowledge about how to trigger the effect. A London rheumatologist found, for example, that red dummy capsules made more effective painkillers than blue, green or yellow ones. Research on American students revealed that blue pills make better sedatives than pink, a colour more suitable for stimulants. Even branding can make a difference: if Aspro or Tylenol is what you like to take for a headache, their chemically identical generic equivalents may be less effective.

I

It matters, too, how the treatment is delivered. Decades ago, when the major tranquilliser chlorpromazine was being introduced, a doctor in Kansas categorised his colleagues according to whether they were keen on it, openly skeptical of its benefits, or took a “let’s try and see” attitude. His conclusion: the more enthusiastic the doctor, the better the drug performed. And this year Ernst surveyed published studies that compared doctors’ bedside manners. The studies turned up one consistent finding: “Physicians who adopt a warm, friendly and reassuring manner,” he reported, “are more effective than those whose consultations are formal and do not offer reassurance.”

J

Warm, friendly and reassuring are precisely CAM’s strong suits, of course. Many of the ingredients of that opening recipe – the physical contact, the generous swathes of time, the strong hints of supernormal healing power – are just the kind of thing likely to impress patients. It’s hardly surprising, then, that complementary practitioners are generally best at mobilising the placebo effect, says Arthur Kleinman, professor of social anthropology at Harvard University.

You need to be registered and logged in to take this quiz. Log in